如何使用 AfxBeginThread创建MFC线程对象和Win32线程对象

MFC用AfxBeginThread创建的线程,如何获取线程函数返回值.~

#include
#include
#include
using namespace std;

DWORD WINAPI ThreadPro(LPVOID lpParamter);
BOOL bRunning = TRUE;
int main()
{
HANDLE hThread = CreateThread(NULL,0,ThreadPro,0,0,NULL);

DWORD dwExitCode;
GetExitCodeThread(hThread,&dwExitCode);
printf("0x%08X
",dwExitCode);
system("pause");
bRunning = FALSE;
system("pause");
GetExitCodeThread(hThread,&dwExitCode);
printf("0x%08X
",dwExitCode);
system("pause");
CloseHandle(hThread);
return 0;
}

DWORD WINAPI ThreadPro(LPVOID lpParamter)
{

while(bRunning)
{
Sleep(1000);
}
return 4L;
}

这个代码给你参考,线程的创建和销毁过程还是很复杂的,想要深入一点了解的话,再问我吧!

CWinThread* AfxBeginThread( AFX_THREADPROC pfnThreadProc,
LPVOID pParam,
int nPriority = THREAD_PRIORITY_NORMAL,
UNT nStackSize = 0,
DWORD dwCreateFlags = 0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL
);//用于创建工作者线程
返回值: 一个指向新线程的线程对象
pfnThreadProc : 线程的入口函数,声明一定要如下: UINT MyThreadFunction( LPVOID pParam );
pParam : 传递入线程的参数,注意它的类型为:LPVOID,所以我们可以传递一个结构体入线程.
nPriority : 线程的优先级,一般设置为 0 .让它和主线程具有共同的优先级.
nStackSize : 指定新创建的线程的栈的大小.如果为 0,新创建的线程具有和主线程一样的大小的栈
dwCreateFlags : 指定创建线程以后,线程有怎么样的标志.可以指定两个值:
CREATE_SUSPENDED : 线程创建以后,会处于挂起状态,真到调用: ResumeThread
0 : 创建线程后就开始运行.
lpSecurityAttrs : 指向一个 SECURITY_ATTRIBUTES 的结构体,用它来标志新创建线程的安全性.如果为 NULL ,
那么新创建的线程就具有和主线程一样的安全性.
如果要在线程内结束线程,可以在线程内调用 AfxEndThread.
结束线程的两种方式
当你在后台用线程来打印一些图形时.有时在打印一部分后,你希望可以停下来,那么此如何让线程停止呢.下
面会详细的向你解释要结束线程的两种方式
1 : 这是最简单的方式,也就是让线程函数执行完成,此时线程正常结束.它会返回一个值,一般0是成功结束,
当然你可以定义自己的认为合适的值来代表线程成功执行.在线程内调用AfxEndThread将会直接结束线程,此时线
程的一切资源都会被回收.
2 : 如果你想让别一个线程B来结束线程A,那么,你就需要在这两个线程中传递信息.
不管是工作者线程还是界面线程,如果你想在线程结束后得到它的确结果,那么你可以调用:
::GetExitCodeThread函数

函数功能描述:创建新的线程

函数原型:
CWinThread* AfxBeginThread( AFX_THREADPROC pfnThreadProc, LPVOID pParam, int nPriority =
THREAD_PRIORITY_NORMAL, UINT nStackSize = 0, DWORD dwCreateFlags = 0, LPSECURITY_ATTRIBUTES
lpSecurityAttrs = NULL );

CWinThread* AfxBeginThread( CRuntimeClass* pThreadClass, int nPriority = THREAD_PRIORITY_NORMAL,
UINT nStackSize = 0, DWORD dwCreateFlags = 0, LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL );

返回值:
指向新创建的线程对象。

参数:
pfnThreadProc:工作线程的函数指针,不可以为空。并且工作线程的函数必须如此声明:
UINT MyControllingFunction( LPVOID pParam );
pThreadClass: 从CWinThread类继承来的对象的RUNTIME_CLASS指针。
pParam:    传递给工作线程函数pfnThreadProc的参数。
nPriority:  线程的优先级。如果为0,则与创建它的线程优先级相同。可以通过参考Win32 Programmer’s
Reference中的SetThreadPriority得到所有可用的优先级列表和描述。
nStackSize:  以字节为单位指定新线程的堆栈大小。如果为0,则与创建它的线程的堆栈大小相同。
dwCreateFlags:指定一个额外的标志控制线程的产生。它可以包括下面两个值中的一个:

        CREATE_SUSPENDED:以挂起模式开始线程,并且指定挂起次数.当调用ResumeThread时,这个
线程才会被执行。
0      :创建之后,马上执行线程。
lpSecurityAttrs:指向SECURITY_ATTRIBUTES结构的指针,结构中指定了线程的安全属性。如果为NULL,则与
创建它的线程的安全属性相同。如果希望得到更多的有关SECURITY_ATTRIBUTES结构的信息,
请参考Win32 Programmer’s Reference。
注释:
调用这个函数创建一个新的线程。第一种形式的AfxBeginThread创建一个工作线程;第二种形式创建一个用户
接口线程。
AfxBeginThread创建一个新的CWinThread对象,调用它的CreateThread函数开始执行线程并且返回指向线程的指
针。Checks are made throughout the procedure to make sure all objects are deallocated properly
should any part of the creation fail. 终止线程,可以在线程函数中调用AfxEndThread, 或者从工作线程
的函数中返回。
了解更多的有关AfxBeginThread的信息,可以参考文章 Multithreading: Creating Worker Threads 和
Multithreading: Creating User-Interface Threads in Visual C++ Programmer’s Guide.

参看:AfxGetThread

示例:
创建一个工作线程:
UINT WorkForce(LPVOID lpParameter);//线程函数声明
CWinThread *pMyFirstWorker,*pMySecondWorker;
LPVOID pParam = NULL;
int nPriority = THREAD_PRIORITY_ABOVE_NORMAL;//默认为THREAD_PRIORITY_NORMAL
UINT nStackSize = 0;//与创建它的线程堆栈大小相同
DWORD dwCreateFlags = 0;//创建后立即执行
LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL ;//与创建它的线程安全属性相同

pMyFirstWorker=AfxBeginThread( (AFX_THREADPROC)WorkForce, pParam, nPriority , nStackSize,
dwCreateFlags , lpSecurityAttrs);
pMySecondWorker=AfxBeginThread( (AFX_THREADPROC)WorkForce, pParam);//如果采用默认值

DWORD WINAPI WorkForce( LPVOID lpParameter // 线程所需参数,可以通过它传递数据)

一、问题的提出
编写一个耗时的单线程程序:
  新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为

“延时6秒”,添加按钮的响应函数,代码如下:

void CSingleThreadDlg::OnSleepSixSecond()
{
Sleep(6000); //延时6秒
}
  编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种

耗时的操作,我们有必要学习——多线程编程。
二、多线程概述
  进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成

,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。
  线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说

main或WinMain函数,将程序的启动点提供给Windows系统。主执行线程终止了,进程也就随之终止。
  每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所

以线程间的通讯非常方便,多线程技术的应用也较为广泛。
  多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在

同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一点在多线程编程时应该注意。
  Win32 SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C++6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。
三、Win32 API对多线程编程的支持
  Win32 提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。
1、HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId);
该函数在其调用进程的进程空间里创建一个新的线程,并返回已建线程的句柄,其中各参数说明如下:
lpThreadAttributes:指向一个 SECURITY_ATTRIBUTES 结构的指针,该结构决定了线程的安全属性,一般置为 NULL;
dwStackSize:指定了线程的堆栈深度,一般都设置为0;
lpStartAddress:表示新线程开始执行时代码所在函数的地址,即线程的起始地址。一般情况为(LPTHREAD_START_ROUTINE)ThreadFunc,

ThreadFunc
是线程函数名;
lpParameter:指定了线程执行时传送给线程的32位参数,即线程函数的参数;
dwCreationFlags:控制线程创建的附加标志,可以取两种值。如果该参数为0,线程在被创建后就会立即开始执行;如果该参数为CREATE_SUSPENDED,则系统产生线程后,该线程处于挂起状态,并不马上执行,直至函数ResumeThread被调用;

lpThreadId:该参数返回所创建线程的ID;
如果创建成功则返回线程的句柄,否则返回NULL。
2、DWORD SuspendThread(HANDLE hThread);
该函数用于挂起指定的线程,如果函数执行成功,则线程的执行被终止。 3、DWORD ResumeThread(HANDLE hThread);
该函数用于结束线程的挂起状态,执行线程。
4、VOID ExitThread(DWORD dwExitCode);
该函数用于线程终结自身的执行,主要在线程的执行函数中被调用。其中参数dwExitCode用来设置线程的退出码。
5、BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);
  一般情况下,线程运行结束之后,线程函数正常返回,但是应用程序可以调用TerminateThread强行终止某一线程的执行。各参数含义如下:
hThread:将被终结的线程的句柄;
dwExitCode:用于指定线程的退出码。
  使用TerminateThread()终止某个线程的执行是不安全的,可能会引起系统不稳定;虽然该函数立即终止线程的执行,但并不释放线程所占用的资源。因此,一般不建议使用该函数。

6、BOOL PostThreadMessage(DWORD idThread,
UINT Msg,
WPARAM wParam,
LPARAM lParam);
该函数将一条消息放入到指定线程的消息队列中,并且不等到消息被该线程处理时便返回。
idThread:将接收消息的线程的ID;
Msg:指定用来发送的消息;
wParam:同消息有关的字参数;
lParam:同消息有关的长参数;
调用该函数时,如果即将接收消息的线程没有创建消息循环,则该函数执行失败。
四、Win32 API多线程编程例程
例程1 MultiThread1
建立一个基于对话框的工程MultiThread1,在对话框IDD_MULTITHREAD1_DIALOG中加入两个按钮和一个编辑框,两个按钮的ID分别是IDC_START,IDC_STOP
,标题分别为“启动”,“停止”,IDC_STOP的属性选中Disabled;编辑框的ID为IDC_TIME ,属性选中Read-only;
 
在MultiThread1Dlg.h文件中添加线程函数声明: void ThreadFunc();
注意,线程函数的声明应在类CMultiThread1Dlg的外部。在类CMultiThread1Dlg内部添加protected型变量: HANDLE
hThread;
DWORD ThreadID;
分别代表线程的句柄和ID。
 
在MultiThread1Dlg.cpp文件中添加全局变量m_bRun : volatile BOOL m_bRun;
m_bRun 代表线程是否正在运行。
你要留意到全局变量 m_bRun 是使用 volatile 修饰符的,volatile
修饰符的作用是告诉编译器无需对该变量作任何的优化,即无需将它放到一个寄存器中,并且该值可被外部改变。对于多线程引用的全局变量

来说,volatile
是一个非常重要的修饰符。
编写线程函数: void ThreadFunc()
{
CTime time;
CString strTime;
m_bRun=TRUE;
while(m_bRun)
{
time=CTime::GetCurrentTime();
strTime=time.Format("%H:%M:%S");
::SetDlgItemText(AfxGetMainWnd()->m_hWnd,IDC_TIME,strTime);
Sleep(1000);
}
}
该线程函数没有参数,也不返回函数值。只要m_bRun为TRUE,线程一直运行。
双击IDC_START按钮,完成该按钮的消息函数:
void CMultiThread1Dlg::OnStart()
{
// TODO: Add your control notification handler code here
hThread=CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)ThreadFunc,
NULL,
0,
&ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
GetDlgItem(IDC_STOP)->EnableWindow(TRUE);
}
双击IDC_STOP按钮,完成该按钮的消息函数: void CMultiThread1Dlg::OnStop()
{
// TODO: Add your control notification handler code here
m_bRun=FALSE;
GetDlgItem(IDC_START)->EnableWindow(TRUE);
GetDlgItem(IDC_STOP)->EnableWindow(FALSE);
}
编译并运行该例程,体会使用Win32 API编写的多线程。

例程2 MultiThread2
  该线程演示了如何传送一个一个整型的参数到一个线程中,以及如何等待一个线程完成处理。
建立一个基于对话框的工程MultiThread2,在对话框IDD_MULTITHREAD2_DIALOG中加入一个编辑框和一个按钮,ID分别是IDC_COUNT,IDC_START
,按钮控件的标题为“开始”;
在MultiThread2Dlg.h文件中添加线程函数声明: void ThreadFunc(int integer);
注意,线程函数的声明应在类CMultiThread2Dlg的外部。
在类CMultiThread2Dlg内部添加protected型变量: HANDLE hThread;
DWORD ThreadID;
分别代表线程的句柄和ID。
 
打开ClassWizard,为编辑框IDC_COUNT添加int型变量m_nCount。在MultiThread2Dlg.cpp文件中添加:void
ThreadFunc(int integer)
{
int i;
for(i=0;i<integer;i++)
{
Beep(200,50);
Sleep(1000);
}
}
双击IDC_START按钮,完成该按钮的消息函数: void CMultiThread2Dlg::OnStart()
{
UpdateData(TRUE);
int integer=m_nCount;
hThread=CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)ThreadFunc,
(VOID*)integer,
0,
&ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
}
顺便说一下WaitForSingleObject函数,其函数原型为:DWORD WaitForSingleObject(HANDLE hHandle,DWORD
dwMilliseconds);
hHandle为要监视的对象(一般为同步对象,也可以是线程)的句柄;
dwMilliseconds为hHandle对象所设置的超时值,单位为毫秒;
  当在某一线程中调用该函数时,线程暂时挂起,系统监视hHandle所指向的对象的状态。如果在挂起的dwMilliseconds毫秒内,线程所等待

的对象变为有信号状态,则该函数立即返回;如果超时时间已经到达dwMilliseconds毫秒,但hHandle所指向的对象还没有变成有信号状态,函

数照样返回。参数dwMilliseconds有两个具有特殊意义的值:0和INFINITE。若为0,则该函数立即返回;若为INFINITE,则线程一直被挂起,

直到hHandle所指向的对象变为有信号状态时为止。
  本例程调用该函数的作用是按下IDC_START按钮后,一直等到线程返回,再恢复IDC_START按钮正常状态。编译运行该例程并细心体会。
例程3 MultiThread3
传送一个结构体给一个线程函数也是可能的,可以通过传送一个指向结构体的指针参数来完成。先定义一个结构体:
typedef struct
{
int firstArgu,
long secondArgu,

}myType,*pMyType;
创建线程时CreateThread(NULL,0,threadFunc,pMyType,…);
在threadFunc函数内部,可以使用“强制转换”:
int intValue=((pMyType)lpvoid)->firstArgu;
long longValue=((pMyType)lpvoid)->seconddArgu;
……
例程3 MultiThread3将演示如何传送一个指向结构体的指针参数。
建立一个基于对话框的工程MultiThread3,在对话框IDD_MULTITHREAD3_DIALOG中加入一个编辑框IDC_MILLISECOND,一个按钮IDC_START,标题

为“开始”
,一个进度条IDC_PROGRESS1;
打开ClassWizard,为编辑框IDC_MILLISECOND添加int型变量m_nMilliSecond,为进度条IDC_PROGRESS1添加CProgressCtrl型变量

m_ctrlProgress;

在MultiThread3Dlg.h文件中添加一个结构的定义: struct threadInfo
{
UINT nMilliSecond;
CProgressCtrl* pctrlProgress;
};
线程函数的声明: UINT ThreadFunc(LPVOID lpParam);
注意,二者应在类CMultiThread3Dlg的外部。
在类CMultiThread3Dlg内部添加protected型变量: HANDLE hThread;
DWORD ThreadID;
分别代表线程的句柄和ID。
在MultiThread3Dlg.cpp文件中进行如下操作:
定义公共变量 threadInfo Info;
双击按钮IDC_START,添加相应消息处理函数:void CMultiThread3Dlg::OnStart()
{
// TODO: Add your control notification handler code here
UpdateData(TRUE);
Info.nMilliSecond=m_nMilliSecond;
Info.pctrlProgress=&m_ctrlProgress;
hThread=CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)ThreadFunc,
&Info,
0,
&ThreadID);

}
在函数BOOL CMultiThread3Dlg::OnInitDialog()中添加语句: {
……

// TODO: Add extra initialization here
m_ctrlProgress.SetRange(0,99);
m_nMilliSecond=10;
UpdateData(FALSE);
return TRUE; // return TRUE unless you set the focus to a control
}
添加线程处理函数:UINT ThreadFunc(LPVOID lpParam) {
threadInfo* pInfo=(threadInfo*)lpParam;
for(int i=0;i<100;i++)
{
int nTemp=pInfo->nMilliSecond;
pInfo->pctrlProgress->SetPos(i);
Sleep(nTemp);
}
return 0;
}
  顺便补充一点,如果你在void CMultiThread3Dlg::OnStart() 函数中添加语句,编译运行你就会发现进度条不进行刷新,主线程也停止了反应。什么原因呢?这是因为WaitForSingleObject函数等待子线程

(ThreadFunc)结束时,导致了线程死锁。因为WaitForSingleObject函数会将主线程挂起(任何消息都得不到处理),而子线程ThreadFunc正

在设置进度条,一直在等待主线程将刷新消息处理完毕返回才会检测通知事件。这样两个线程都在互相等待,死锁发生了,编程时应注意避免



例程4 MultiThread4
该例程测试在Windows下最多可创建线程的数目。

建立一个基于对话框的工程MultiThread4,在对话框IDD_MULTITHREAD4_DIALOG中加入一个按钮IDC_TEST和一个编辑框IDC_COUNT,按钮标题为

“测试”
, 编辑框属性选中Read-only;
在MultiThread4Dlg.cpp文件中进行如下操作:
添加公共变量volatile BOOL m_bRunFlag=TRUE;
该变量表示是否还能继续创建线程。
添加线程函数:
DWORD WINAPI threadFunc(LPVOID threadNum)
{
while(m_bRunFlag)
{
Sleep(3000);
}
return 0;
}
只要 m_bRunFlag 变量为TRUE,线程一直运行。
双击按钮IDC_TEST,添加其响应消息函数:void CMultiThread4Dlg::OnTest()
{
DWORD threadID;
GetDlgItem(IDC_TEST)->EnableWindow(FALSE);
long nCount=0;
while(m_bRunFlag)
{
if(CreateThread(NULL,0,threadFunc,NULL,0,&threadID)==NULL)
{
m_bRunFlag=FALSE;
break;
}
else
{
nCount++;
}
}
//不断创建线程,直到再不能创建为止
m_nCount=nCount;
UpdateData(FALSE);
Sleep(5000);
//延时5秒,等待所有创建的线程结束
GetDlgItem(IDC_TEST)->EnableWindow(TRUE);
m_bRunFlag=TRUE;
}
五、MFC对多线程编程的支持
  MFC中有两类线程,分别称之为工作者线程和用户界面线程。二者的主要区别在于工作者线程没有消息循环,而用户界面线程有自己的消息

队列和消息循环。
  工作者线程没有消息机制,通常用来执行后台计算和维护任务,如冗长的计算过程,打印机的后台打印等。用户界面线程一般用于处理独

立于其他线程执行之外的用户输入,响应用户及系统所产生的事件和消息等。但对于Win32的API编程而言,这两种线程是没有区别的,它们都

只需线程的启动地址即可启动线程来执行任务。
  在MFC中,一般用全局函数AfxBeginThread()来创建并初始化一个线程的运行,该函数有两种重载形式,分别用于创建工作者线程和用户界

面线程。两种重载函数原型和参数分别说明如下:

(1) CWinThread* AfxBeginThread(AFX_THREADPROC pfnThreadProc,
LPVOID pParam,
nPriority=THREAD_PRIORITY_NORMAL,
UINT nStackSize=0,
DWORD dwCreateFlags=0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
PfnThreadProc:指向工作者线程的执行函数的指针,线程函数原型必须声明如下: UINT ExecutingFunction(LPVOID
pParam);
请注意,ExecutingFunction()应返回一个UINT类型的值,用以指明该函数结束的原因。一般情况下,返回0表明执行成功。
pParam:传递给线程函数的一个32位参数,执行函数将用某种方式解释该值。它可以是数值,或是指向一个结构的指针,甚至可以被忽略;
nPriority:线程的优先级。如果为0,则线程与其父线程具有相同的优先级;
nStackSize:线程为自己分配堆栈的大小,其单位为字节。如果nStackSize被设为0,则线程的堆栈被设置成与父线程堆栈相同大小;
dwCreateFlags:如果为0,则线程在创建后立刻开始执行。如果为CREATE_SUSPEND,则线程在创建后立刻被挂起;
lpSecurityAttrs:线程的安全属性指针,一般为NULL;
(2) CWinThread* AfxBeginThread(CRuntimeClass* pThreadClass,
int nPriority=THREAD_PRIORITY_NORMAL,
UINT nStackSize=0,
DWORD dwCreateFlags=0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);

  pThreadClass 是指向 CWinThread
的一个导出类的运行时类对象的指针,该导出类定义了被创建的用户界面线程的启动、退出等;其它参数的意义同形式1。使用函数的这个原型

生成的线程也有消息机制,在以后的例子中我们将发现同主线程的机制几乎一样。
下面我们对CWinThread类的数据成员及常用函数进行简要说明。
m_hThread:当前线程的句柄;
m_nThreadID:当前线程的ID;
m_pMainWnd:指向应用程序主窗口的指针
BOOL CWinThread::CreateThread(DWORD dwCreateFlags=0,
UINT nStackSize=0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);
  该函数中的dwCreateFlags、nStackSize、lpSecurityAttrs参数和API函数CreateThread中的对应参数有相同含义,该函数执行成功,返回

非0值,否则返回0。
  一般情况下,调用AfxBeginThread()来一次性地创建并启动一个线程,但是也可以通过两步法来创建线程:首先创建CWinThread类的一个

对象,然后调用该对象的成员函数CreateThread()来启动该线程。

virtual BOOL CWinThread::InitInstance();
  重载该函数以控制用户界面线程实例的初始化。初始化成功则返回非0值,否则返回0。用户界面线程经常重载该函数,工作者线程一般不

使用InitInstance()。
virtual int CWinThread::ExitInstance();
  在线程终结前重载该函数进行一些必要的清理工作。该函数返回线程的退出码,0表示执行成功,非0值用来标识各种错误。同

InitInstance()成员函数一样,该函数也只适用于用户界面线程。
六、MFC多线程编程实例
  在Visual C++
6.0编程环境中,我们既可以编写C风格的32位Win32应用程序,也可以利用MFC类库编写C++风格的应用程序,二者各有其优缺点。基于Win32的

应用程序执行代码小巧,运行效率高,但要求程序员编写的代码较多,且需要管理系统提供给程序的所有资源;而基于MFC类库的应用程序可以

快速建立起应用程序,类库为程序员提供了大量的封装类,而且Developer
Studio为程序员提供了一些工具来管理用户源程序,其缺点是类库代码很庞大。由于使用类库所带来的快速、简捷和功能强大等优越性,因此

除非有特殊的需要,否则Visual
C++推荐使用MFC类库进行程序开发。
我们知道,MFC中的线程分为两种:用户界面线程和工作者线程。我们将分别举例说明。
用 MFC 类库编程实现工作者线程

工作者线程的创建 CWinThread* pThread = AfxBeginThread(ThreadFuc,&ThreadInfo)
ThreadFuc 是你的线程函数,形式是这样的:UINT ThreadFuc(LPVOID pParam){
你的处理代码;
return 0;} ThreadInfo 是一个THREADPARAM类型的数据,线程函数的参数。

UINT ThreadProc1(LPVOID lpParam)
{
return 0;
}
在需要创建线程的地方:
AfxBeginThread(ThreadProc1,&m_number1,THREAD_PRIORITY_NORMAL,0,0,NULL);

CWinThread *m_Proc;
DWORD SCProc(LPVOID);
HANDLE g_Event;

m_SCADAToMMIProc = AfxBeginThread((AFX_THREADPROC)SCProc,NULL,THREAD_PRIORITY_ABOVE_NORMAL);
SetEvent(g_Event);
DWORD SCProc(LPVOID)
{
for ( ; ; )
{
WaitForSingleObject(g_Event,INFINITE);
ResetEvent(g_Event);
return 0;
}

这个你可以看下孙鑫老师的c++教程,那里面讲的比较清楚,我手机发太费劲

相关兴趣推荐

IT评价网,数码产品家用电器电子设备等点评来自于网友使用感受交流,不对其内容作任何保证

联系反馈
Copyright© IT评价网