色谱法的基本原理是什么

色谱法有哪些类型?其分离的基本原理是什么~

柱色谱法,又称层析法。是一种以分配平衡为机理的分配方法。柱色谱主要分为吸附柱色谱、分配柱色谱两种。

1. 吸附柱色谱原理
在一定条件下,硅胶与被分离物质之间产生作用,这种作用主要是物理和化学作用两种.物理作用来自于硅胶表表面与溶质分子之间的范德华力.化学作用主要是硅胶表面的硅羟基与待分离物质之间的氢键作用。色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤维塞住,管内装入吸附剂。吸附剂的颗粒应尽可能保持大小均匀,以保证良好的分离效果。除另有规定外,通常多采用直径为0.07~0.15mm的颗粒。色谱柱的大小,吸附剂的品种和用量,以及洗脱时的流速,均按各品种项下的规定。
在吸附柱色谱中,吸附剂是固定相,洗脱剂是流动相,相当于薄层色谱中的展开剂。吸附剂的基本原理与吸附薄层色谱相同,也是基于各组分与吸附剂间存在的吸附强弱差异,通过使之在柱色谱上反复进行吸附、解吸、再吸附、再解吸的过程而完成的。所不同的是,在进行柱色谱的过程中,混合样品一般是加在色谱柱的顶端,流动相从色谱柱顶端流经色谱柱,并不断地从柱中流出。由于混合样中的各组分与吸附剂的吸附作用强弱不同,因此各组分随流动相在柱中的移动速度也不同,最终导致各组分按顺序从色谱柱中流出。如果分步接收流出的洗脱液,便可达到混合物分离的目的。一般与吸附剂作用较弱的成分先流出,与吸附作用较强的成分后流出。

2. 分配柱色谱原理
方法和吸附柱色谱基本一致。装柱前,先将载体和固定液混合,然后分次移入色谱柱中并用带有平面的玻棒压紧;供试品可溶于固定液,混以少量载体,加在预制好的色谱柱上端。洗脱剂需先加固定液混合使之饱和,以避免洗脱过程中两相分配的改变。

纸色谱法基本原理:
纸纤维为载体,吸着在其上的水为固定相,属于正相分配色谱,依据分配系数的不同而达到分离,极性或亲水性强的组分,K大,Rf值小,极性弱或亲脂性强的组分,K小,Rf值大。
纸色谱法指的是把一种溶剂固定在固体的支持物上,由于滤纸纤维对水有较强的亲和力,一般能吸附其自身质量22%的水,其中,6%的水以氢键与纤维素牢固结合,这些水即称为固定相。
被水饱和的有机相 为流动相。当流动相从含有氨基酸样品的滤纸上流过时,氨基酸就在固定相与流动相之间连续进行分配。

扩展资料:
纸色谱法系以纸为载体,以纸上所含水分或其他物质为固定相,用展开剂进行展开的分配色谱。供试品经展开后,可用比移值(R)表示其各组成成分的位置(比移值=原点中心至斑点中心的距离/原点中心至展开剂前沿的距离)。
但由于影响比移值的因素较多,因而一般采用在相同实验条件下与对照物质对比以确定其异同。作为药品的鉴别时,供试品在色谱中所显主斑点的位置与颜色(或荧光),应与对照品在色谱中所显的主斑点相同。
作为药品的纯度检查时,可取一定量的供试品,经展开后,按各药品项下的规定,检视其所显杂质斑点的个数或呈色(或荧光)的强度。作为药品的含量测定时,将主色谱斑点剪下洗脱后,再用适宜的方法测定。
参考资料来源:百度百科-纸色谱法

  色谱法(chromatography)又称色谱分析、色谱分析法、层析法,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。
  色谱法基本原理是指在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动,故称涡流扩散。
  1.涡流扩散项 A
  在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动,故称涡流扩散。
  由于填充物颗粒大小的不同及填充物的不均匀性,使组分在色谱
  柱中路径长短不一,因而同时进色谱柱的相同组分到达柱口时间并
  不一致,引起了色谱峰的变宽。色谱峰变宽的程度由下式决定:
  A = 2λdp
  上式表明,A与填充物的平均直径dp的大小和填充不规则因子λ有关,与流动相的性质、线速度和组分性质无关。为了减少涡流扩散,提高柱效,使用细而均匀的颗粒,并且填充均匀是十分必要的。对于空心毛细管,不存在涡流扩散。因此 A = 0。
  2. 分子扩散项 B / u (纵向扩散项)
  纵向分子扩散是由浓度梯度造成的。组分从柱入口加入,其浓度分布的构型呈“塞子”状。它随着流动相向前推进,由于存在浓度梯度,“塞子”必然自发的向前和向后扩散,造成谱带展宽。分子扩散项系数为 B = 2γ Dg
  γ是填充柱内流动相扩散路径弯曲的因素,也称弯曲因子,它反映了固定相颗粒的几何形状对自由分子扩散的阻碍情况。
  Dg为组分在流动相中扩散系数(cm3·s-1),分子扩散项与组分在流动相中扩散系数Dg成正比.
  Dg与流动相及组分性质有关:
  (a) 相对分子质量大的组分Dg小,Dg反比于流动相相对分子质量的平方根,所以采用相对分子质量较大的流动相,可使B项降低;
  (b) Dg随柱温增高而增加,但反比于柱压。
  另外纵向扩散与组分在色谱柱内停留时间有关,流动相流速小,组分停留时间长,纵向扩散就大。因此为降低纵向扩散影响,要加大流动相速度。对于液相色谱,组分在流动相中纵向扩散可以忽略。
  3. 传质阻力项 Cu
  由于气相色谱以气体为流动相,液相色谱以液体为流动相,它们的传质过程不完全相同。
  (1)气液色谱
  传质阻力系数C包括气相传质阻力系数Cg和液相传质阻力系数C1两项,即
  C = Cg+ C1
  气相传质过程是指试样组分从气相移动到固定相表面的过程。这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。有的分子还来不及进入两相界面,
  就被气相带走;有的则进入两相界面又来不及返回气相。这样使得试样在两相界面上不能瞬间达到分配平衡,引起滞后现象,从而使色谱峰变宽。对于填充柱,气相传质阻力系数Cg为:
  Cg= 0.01k2 / (1 + k)2 · dp / Dg
  式中k为容量因子。由上式看出,气相传质阻力与填充物粒度dp的平方成正比,与组分在载气流中的扩散系数Dg成反比。因此,采用粒度小的填充物和相对分子质量小的气体(如氢气)做载气,可使Cg减小,提高柱效。
  液相传质过程是指试样组分从固定相的气/液界面移动到液相内部,并发生质量交换,达到分配平衡,然后又返回气/液界面的传质过程。这个过程也需要一定的时间,此时,气相中组分的其它分子仍随载气不断向柱口运动,于是造成峰形扩张。液相传质阻力系数 C1为:
  C1 = 2 / 3 · k / (1 + k)2 · df2 / Dl
  由上式看出,固定相的液膜厚度df薄,组分在液相的扩散系数D1大,则液相传质阻力就小。降低固定液的含量,可以降低液膜厚度,但k值随之变小,又会使C1增大。当固定液含量一定时,液膜厚度随载体的比表面积增加而降低,因此,一般采用比表面积较大的载体来降低液膜厚度。但比表面太大,由于吸附造成拖尾峰,也不利于分离。虽然提高柱温可增大D1,但会使k值减小,为了保持适当的C1值,应控制适宜的柱温。
  (2) 液液分配色谱
  传质阻力系数(C)包含流动相传质阻力系数(Cm)和固定相传质阻力系数(Cs),即
  C = Cm + Cs
  其中Cm又包含流动的流动相中的传质阻力和滞留的流动相中的传质阻力,即:
  Cm = wmdp2 / Dm + wsmdp2 / Dm
  式中右边第一项为流动的流动相中的传质阻力。当流动相流过色谱柱内的填充物时,靠近填充物颗粒的流动相流速比在流路中间的稍慢一些,故柱内流动相的流速是不均匀的。
  这种传质阻力对板高的影响与固定相粒度dp 的平方成正比,与试样分子在流动相中的扩散系数Dm成反比,ωm是由柱和填充的性质决定的因子。 右边第二项为滞留的流动相中的传质阻力。这是由于固定相的多孔性,会造成某部分流动相滞留在一个局部,滞留在固定相微孔内的流动相一般是停滞不动的流动相中的试样分子要与固定相进行质量交换,必须首先扩散到滞留区。如果固定相的微孔既小又深,传质速率就慢,对峰的扩展影响就大(如教材P.302图15.6所示)。式中ωm是一常数,它与颗粒微孔中被流动相所占据部分的分数及容量因子有关。显然,固定相的粒度愈小,微孔孔径愈大,传质速率就愈快,柱效就高。对高效液相色谱固定相的设计就是基于这一考虑。
  液液色谱中固定相传质阻力系数(Cs)可用下式表示:
  Cs= wsdf2 / Ds
  公式说明试样分子从流动相进入固定液内进行质量交换的传质过程与液膜厚度df平方成正比,与试样分子在固定液的扩散系数Ds成反比。式中ωs是与容量因子k有关的系数。
  气相色谱速率方程和液相色谱速率方程的形式基本一致,主要区别在液液色谱中纵向扩散项可忽略不计,影响柱效的主要因素是传质阻力项。
  4. 流动相线速度对板高的影响
  (1)LC和GC的H-u图
  根据van Deemter公式作LC和GC的H-u图,LC和GC的H-u图十分相似,对应某一流速都有一个板高的极小值,这个极小值就是柱效最高点;LC板高极小值比GC的极小值小一个数量级以上,说明液相色谱的柱效比气相色谱高得多;LC的板高最低点相应流速比起GC的流速亦小一个数量级,说明对于LC,为了取得良好的柱效,流速不一定要很高。
  (2) 分子扩散项和传质阻力项对板高的贡献
  较低线速时,分子扩散项起主要作用;较高 线速时,传质阻力项起主要作用;其中流动相传质阻力项对板高的贡献几乎是一个定值。在高线速度时,固定相传质阻力项成为影响板高的主要因素,随着速度增高,板高值越来越大,柱效急剧下降。
  5. 固定相粒度大小对板高的影响
  粒度越细,板高越小,并且受线速度影响亦小。
  这就是为什么在HPLC中采用细颗粒作固定相的根据。当然,固定相颗粒愈细,柱流速愈慢。只有采取高压技术,流动相流速才能符合实验要求。

     色谱法基本原理是指在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动。



就是通过不同物质对光谱的吸收不同,来判断存在什么物质,量是多少。



色谱分离的基本原理
答:色谱分离的基本原理如下:按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为: 吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物。分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。

色谱分析原理
答:色谱分析原理如下:一、基本原理:色谱分析有两个要素——流动相和固定相。在流动相从固定相的一端流到另一端的过程中,加在固定相起始端的溶质随流动相流动,并在流动相和固定相之间来回转移。不同的溶质与这两相的亲和力大小不同,溶质的移动速度也不同,因而得到分离。固定相一般是固体,也可以是...

气相色谱分析的基本原理是什么?
答:气相色谱分析的基本原理是:利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。气相色谱分离过程中,溶质分子与...

高效液相色谱法的原理
答:该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相...

色谱分析法的基本理论是什么啊?写出基本理论方程式
答:其分离原理是利 用混合物中各组分在固定相和流动相中溶解、解析、吸附、脱附或其他亲和作用性能的微小差异,当两相作相对运动时,使各组 分随着移动在两相中反复受到上述各种作用 而得到分离。色谱法已成为分离分析各种复 杂混合物的重要方法,但对分析对象的鉴别 能力较差。[1]色谱分析法的分类比较复杂...

简要说明气相色谱分析的基本原理。
答:气相色谱分析的基本原理:气相色谱分析是使混合物中各组分在两相间进行分配,其中一相是不动的(固定相),另一相(流动相)携带混合物流过此固定相,与固定相发生作用,在同一推动力下,不同组分在固定相中滞留的时间不同,依次从固定相中流出,又称色层法或者层析法。,组分在固定相与流动相之间不断...

薄层色谱法的原理是什么?
答:5. 可视化和定量分析:完成分离后,薄层平板上的色带可以通过各种可视化方法进行观察和分析,如紫外灯照射、染色剂喷洒、热激活等。可以通过测量色带迁移距离和计算相对迁移率(Rf 值)来进行定性和定量分析。薄层色谱法的原理简单而灵活,可以用于各种化学和生化样品的分离和分析。它广泛应用于药物分析、天然...

薄层色谱法的基本原理是什么?
答:利用展开剂判定。分别点样各组分对照品,用适当的展开剂展开混合物,再喷入显色剂,根据混合物薄层斑点的颜色,确定混合物中的物质,从而判定各组分在薄层上的位置。根据固定相对各组分的吸附作用或溶解度不同的原理。吸附力弱或溶解度小的组分在固定相中分子运动较快,在薄层的上层。吸附力弱或溶解度...

纸色谱法基本原理是什么 ? 呵呵
答:纸色谱法基本原理:纸纤维为载体,吸着在其上的水为固定相,属于正相分配色谱,依据分配系数的不同而达到分离,极性或亲水性强的组分,K大,Rf值小,极性弱或亲脂性强的组分,K小,Rf值大。纸色谱法指的是把一种溶剂固定在固体的支持物上,由于滤纸纤维对水有较强的亲和力,一般能吸附其自身质量...

什么叫薄层色谱法?原理是什么?!!急!!
答:也用于跟踪反应进程。薄层色谱法的基本原理:薄层色谱法是一种吸附薄层色谱分离法,它利用各成分对同一吸附剂吸附能力不同,使在流动相(溶剂)流过固定相(吸附剂)的过程中,连续的产生吸附、解吸附、再吸附、再解吸附,从而达到各成分的互相分离的目的。

IT评价网,数码产品家用电器电子设备等点评来自于网友使用感受交流,不对其内容作任何保证

联系反馈
Copyright© IT评价网