生物学名词解释

现代生物学名词解释~

生物名词解释 高中所有的哦 希望对你有帮助
绪论
应激性:任何生物体对外界的刺激都能发生一定的反应。趋向有利刺激,逃避不利刺激。
反射:人和动物在神经系统的参与下,对体内和外界环境的各种刺激所发生的规律性的反应。
生命的物质基础
3、原生质:是细胞内的生命物质。它的主要成分是蛋白质、脂类和核酸。细胞是由原生质构成的。构成细胞的这一小团原生质又分化为细胞膜、细胞质和细胞核等部分。
4、结合水:水在细胞中以两种形式存在。一部分与细胞内的其他物质结合,叫结合水。结合水是细胞结构的组成成分。
5、自由水:大部分以游离的形式存在,可以自由流动,叫自由水。
6、缩合:氨基酸分子互相结合的方式是:一个氨基酸分子的羧基(—COOH)和另一个氨基酸分子的氨基(—NH2)相连接,同时失去一分子的水,这种结合方式叫缩合。
7、肽键:连接两个氨基酸分子的那个键(—NH—CO—)叫做肽键。
8、二肽:由两个氨基酸分子缩合而成的化合物,叫做二肽。
9、多肽:由多个氨基酸分子缩合而成的含有多个肽键的化合物,叫做多肽。
10、核酸:核酸最初是从细胞核中提取出来的,呈酸性,因此叫做核酸。
11、脱氧核糖核酸:核酸可以分为两大类:一类是含有脱氧核糖的,叫做脱氧核糖核酸,简称DNA。
12、核糖核酸:另一类是含有核糖的,叫做核糖核酸,简称RNA。
细胞的结构和功能
13、显微结构:在普通光学显微镜中能够观察到的细胞结构。
14、亚显微结构:又称超微结构。指在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。
15、细胞膜:又称原生质膜或质膜,是细胞的原生质体分化形成,并位于其外表面的一层极薄的膜结构。
16、膜蛋白:指细胞内各种膜结构中蛋白质成分。
17、载体蛋白:膜结构中与物质运输有关的一种跨膜蛋白质。这种膜运输蛋白质具有专一的结合部位,对所结合的物质具有高度选择性,只能同专一物质结合的特性类似于酶同底物的反应。当某种载体蛋白的外端表面的结合部位与专一性物质结合后,载体蛋白分子就发生构象变化,将该物质分子运转到膜的内表面,随之释放到细胞质中。
18、细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。在光学显微镜下观察活细胞,可以看到细胞质是透明的胶状物,细胞质主要包括基质和细胞器。
19、细胞质基质:细胞质内呈液态的部分是基质。
20、细胞器:细胞质中具有特定功能的各种亚细胞结构的总称。
21、染色质:在细胞核中分布着一些容易被碱性染料染成深色的物质,这些物质是由DNA和蛋白质组成的。在细胞分裂间期,这些物质成为细长的丝,交织成网状,这些丝状物质就是染色质。
22、染色体:在细胞分裂期,细胞核内长丝状的染色质高度螺旋化,缩短变粗,就形成了光学显微镜下可以看见的染色体。
细胞分裂
23、细胞周期:连续分裂的细胞,从上一次分裂完成时开始,到下一次分裂完成时为止,这是一个细胞周期。一个细胞周期包括两个阶段:分裂间期和分裂期。
24、分裂间期:从细胞在上一次分裂结束之后到下一次分裂之前,是分裂间期。
25、分裂期:在分裂间期结束之后,就进入分裂期。
新陈代谢概述
26、新陈代谢:生物体与外界环境之间物质和能量的交换,以及生物体内物质和能量的转变过程,叫做新陈代谢。
27、同化作用(合成代谢):在新陈代谢过程中,生物体把从外界环境中摄取的营养物质转变成自身的组成物质,并储存能量,这叫做同化作用。
28、异化作用(分解代谢):生物体把组成自身的一部分物质加以分解,释放出其中的能量,并把代谢的最终产物排出体外,这叫做异化作用。
29、酶:酶是活细胞所产生的具有催化能力的一类特殊的蛋白质。
水分代谢
30、水分代谢:指植物对水分的吸收、运输、利用和散失的过程。
31、渗透作用:水分子(或其他溶剂分子)通过半透膜的扩散,叫做渗透作用。
32、渗透吸水:靠渗透作用吸收水分的过程,叫做渗透吸水。
33、原生质层:包括细胞膜、液泡膜和这两层膜之间的细胞质。
34、质壁分离:原生质层与细胞壁分离的现象,叫做质壁分离。
35、蒸腾作用:植物体内的水分,以水蒸气的形式通过叶的气孔散失到大气中的过程,叫做蒸腾作用。
矿质代谢
36、矿质代谢:指植物对矿质元素的吸收、运输和利用的过程。
37、矿质元素:一般指除了C、H、O以外,主要由根系从土壤中吸收的元素。
光合作用
38、光合作用:是绿色植物通过叶绿体,利用光能,把二氧化碳和水合成储存能量的有机物,并且释放出氧气的过程。
呼吸作用
39、生物的呼吸作用(又叫生物氧化):生物体内的有机物在细胞中经过一系列的氧化分解,最终生成二氧化碳或其它产物,并且释放出能量的总过程。
40、有氧呼吸:是指细胞在氧气的参与下,通过酶的催化作用,把糖类等有机物彻底氧化分解,产生出二氧化碳和水,同时释放出大量的能量的过程。有氧呼吸是高等动植物进行呼吸作用的主要形式。
41、无氧呼吸:一般是指在无氧条件下,通过酶的催化作用,植物细胞把糖类等有机物分解成为不彻底的氧化产物,同时释放出少量能量的过程。这个过程对于高等动植物来说称为无氧呼吸。
42、发酵:一般是指在无氧条件下,通过酶的催化作用,植物细胞把糖类等有机物分解成为不彻底的氧化产物,同时释放出少量能量的过程。如果用于微生物,习惯上称为发酵。
物质代谢
43、食物的消化:指在消化道中,将结构复杂、不溶于水的大分子有机物,转变变成为结构简单、溶于水的小分子有机物。
44、营养物质的吸收:是指包括水分、无机盐等在内的各种营养物质通过消化道的上皮细胞进入血液和淋巴的过程。
能量代谢
45、能量代谢:指生物体对能量的储存、释放、转移和利用等过程。
46、内呼吸:机体内的全部细胞从内环境吸入氧和排出二氧化碳,以及氧在细胞内的利用的生理过程。
47、外呼吸:机体从外界环境吸入氧和排出二氧化碳的生理过程。
新陈代谢的基本类型
48、自养型:生物体在同化作用的过程中,能够直接把从外界环境摄取的无机物转变成为自身的组成物质,并储存了能量,这种新陈代谢类型叫做自养型。
49、异养型:生物体在同化作用的过程中,不能直接利用无机物制成有机物,只能把从外界摄取的现成的有机物转变成自身的组成物质,并储存了能量,这种新陈代谢类型叫做异氧型。
50、需氧型(有氧呼吸型):生物体在异化作用的过程中,必须不断从外界环境中摄取氧来氧化分解自身的组成物质,以释放能量,并排出二氧化碳,这种新陈代谢类型叫做需氧型。
51、厌氧型(无氧呼吸型):生物体在异化作用的过程中,在缺氧的条件下,依靠酶的作用使有机物分解,以获得进行生命活动所需的能量,这种新陈代谢类型叫做厌氧型。
生物的生殖和发育
52、生物的生殖:生物体产生自己的后代的过程,叫做生物的生殖。
53、无性生殖:是指不经过生殖细胞的结合,由母体直接产生出新个体的生殖方式。
54、分裂生殖:又叫裂殖,是生物由一个母体分裂成两个子体的生殖方式。
55、孢子和孢子生殖:有的生物,身体长成以后,能够产生一种细胞,这种细胞不经过两两结合,就可以直接形成新个体。这种细胞叫孢子,这种生殖方式叫做孢子生殖。
56、出芽生殖:又叫芽殖,是由母体在一定的部位生出芽体的生殖方式。芽体逐渐长大,形成与母体一样的个体,并从母体上脱落下来,成为完整的新个体。
57、营养生殖:由植物体的营养器官(根、茎、叶)产生出新个体的生殖方式。
58、有性生殖:是指经过两性生殖细胞的结合,产生合子,由合子发育成新个体的生殖方式。这是生物界中普遍存在的生殖方式。
59、配子生殖:由亲体产生的有性生殖细胞——配子,两两相配成对,互相结合,成为合子,再由合子发育成新个体的生殖方式,叫做配子生殖。
60、卵细胞:在进行有性生殖时,有的细胞长的大,失去鞭毛,不能游动,这种大的配子叫做卵细胞。
61、精子:有的细胞能够产生大量的小细胞,小细胞生有两根鞭毛,能够游动,这种小的配子叫做精子。
62、卵式生殖:卵细胞与精子结合的生殖方式叫做卵式生殖。
63、减数分裂:是在有性生殖过程中进行的特殊的有丝分裂,分裂过程中细胞连续分裂两次,而染色体和DNA只复制一次。分裂产生的生殖细胞中染色体和DNA数目只有原始生殖细胞的一半。
64、同源染色体:减数分裂过程中,联会配对的两条染色体,形状和大小一般都相同,一个来自父方,一个来自母方。叫做同源染色体。
65、联会:减数分裂过程中,同源染色体两两配对的现象,叫做联会。
66、四分体:减数分裂过程中,联会配对的每一对同源染色体含有四个染色单体,叫做四分体。
67、受精作用:精子与卵细胞结合成为合子的过程,叫做受精作用。
68、生物的个体发育:受精卵经过细胞分裂(有丝分裂)、组织分化和器官形成,直到发育成性成熟个体的过程叫做生物的个体发育。
69、被子植物:凡是胚珠有子房包被着,种子有果皮包被着的植物,就叫做被子植物。
99、胚的发育:是指受精卵发育成为幼体。
70、胚后发育:是指幼体从卵膜内孵化出来或从母体生出来并发育成为性成熟的个体。
71、变态发育:幼体和成体差别很大,而且形态的改变又是集中在短时间内完成的,这种胚后发育叫做变态发育。
生命活动的调节
72植物的向性运动:指植物体受到单一方向的外界刺激而引起的定向运动。
73、植物激素:植物体的一定部位产生的对植物体的新陈代谢、生长发育等生命活动起调节作用的特殊微量化学物质。
74、生长素的二重性:指低浓度的生长素可以促进植物生长,而高浓度的生长素则抑制植物生长,甚至杀死植物。 (浓度的高、低是针对最适浓度而言)
75顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。
76、体液调节:指某些化学物质(如激素,二氧化碳)通过体液的传送,对人和动物的生理活动进行的调节。
77、动物激素:动物体的内分泌腺产生的对动物的新陈代谢、生长发育等生命活动起调节作用的特殊微量化学物质。
78、反馈调节:指在大脑皮层的影响下,下丘脑通过垂体,调节和控制某些内分泌腺中激素的合成和分泌;而激素进入血液后,又可以反过来调节下丘脑和垂体中有关激素的合成和分泌。
79、协同作用:指不同激素对同一生理效应都发挥作用,从而达到增强效应的结果。
80、拮抗作用:指不同的激素对某一生理效应发挥相反的作用。
遗传与变异
81、遗传现象:生物的亲代与子代之间,在形态、结构和功能上常常相似的现象。
82、变异现象:生物的亲代与子代之间,子代的不同个体之间,总是或多或少的存在着差异的现象。
遗传是相对的,变异是绝对的,遗传和变异在生物的进化中同等重要。
83、细胞核遗传:细胞核遗传指由细胞核里的遗传物质控制的遗传现象。
84、细胞质遗传:指由细胞质(线粒体和叶绿体)中的遗传物质控制的遗传现象。
细胞核遗传遵循孟达尔的遗传定律,细胞质遗传不遵循。两者的遗传物质都是DNA。
85、性状:生物体在形态、结构、生理等方面所具有的区别性特征。
86、DNA 的复制:是指以亲代DNA分子为模板来合成子代DNA的过程。
87、半保留复制:指DNA 的复制过程中,子代DNA分子都保留了原来DNA分子中的一条链。
88、基因:是控制生物性状的遗传物质的功能单位和结构单位,是有遗传效应的DNA片段。
基因在染色体上呈线性排列,每个基因中可以含有成百上千个脱氧核苷酸。
89、遗传信息:基因的脱氧核苷酸排列顺序就代表遗传信息。
90、转录:指在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。
91、翻译:指在细胞质中的核糖体上,以信使RNA为模板,一转运RNA为运载工具,按照碱基互补配对原则,合成具有一定氨基酸顺序的蛋白质的过程。
92、中心法则:遗传信息从DNA传递给RNA,再从RNA传递给蛋白质的转录和翻译过程,以及遗传信息从DNA传递给DNA的复制过程。
后发现,某些病毒中RNA同样可以反过来决定DNA,为逆转录。是对“中心法则”的补充和完善。
93、密码子:信使RNA上决定一个氨基酸的三个相邻的碱基,叫做密码子。
94、相对性状:同种生物同一性状的不同表现类型,叫做相对性状。
95、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。
96、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。
97、性状分离:在杂种后代中显现不同性状的现象,叫做性状分离。
98、显性基因:控制显性性状的基因,叫做显性基因。
99、隐性基因:控制隐性性状的基因,叫做隐性基因。
100、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。 (Dd)
101、等同基因:在一对同源染色体的同一位置上的,控制着相同性状的基因,叫做等同基因。 (DD或dd)
102、表现型:是指生物个体所表现出来的性状。
103、基因型:是指与表现型有关系的基因组成。
104、纯合体:由含有相同基因的配子结合成的合子发育而成的个体。
纯合体自交后代不发生性状分离。
105、杂合体:由含有不同基因的配子结合成的合子发育而成的个体。
杂合体自交后代要发生性状分离。
106、测交:让杂种子一代与隐性类型相交,用来测定F1的基因型。
107、基因的分离定律:在进行减数分裂的时候,等位基因随着同源染色体的分开而分离,分别进入两个配子中,独立地随着配子遗传给后代,这就是基因分离规律。
108、基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。
109、性状分离:在杂种后代中,同时呈现出显性性状和隐性性状的现象。
110、染色体组型(也叫核型):指某一种生物体中全部染色体的数目、大小和形态特征。
111、性别决定:一般是指雌雄异体的生物决定性别的方式。
112、性染色体:与决定性别有关染色体。
113、常染色体:与决定性别无关的染色体叫做。
114、伴性遗传:性染色体上的基因,所控制的遗传性状与性别相联系,这种遗传方式叫做伴性遗传。
115、基因重组:是指控制不同性状的基因的重新组合。
116、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。
117、自然突变:在自然条件下发生的基因突变。
118、诱发突变(人工诱变):在人为条件下,利用物理的、化学的因素来处理生物,使它发生基因突变。
119、诱变育种:在人为条件下,利用物理的、化学的因素来处理生物,使它发生基因突变,从中选育生物新品种的育种方法。
120、染色体变异:在自然因素或人为因素的影响下,染色体的结构和数目发生改变引起的变异,叫染色体变异。
121、染色体组:细胞中形态和功能上各不相同,但是都携带着控制一种生物生长发育、遗传变异的全部信息的一组非同源染色体。
122、二倍体:凡是体细胞中含有两个染色体组的个体。
123、多倍体:凡是体细胞中含有三个以上染色体组的个体。
124、单倍体:是指体细胞含有本物种配子染色体数目的个体叫该物种的单倍体。
125、人工诱导多倍体:指利用人为的方法使生物的染色体加倍成为多倍体。
126、多倍体育种:指利用人为的方法使生物的染色体加倍成为多倍体,从中选育优良品种的育种方法。
127、人类遗传病:通常指由于遗传物质的改变引起的人类疾病。
生物的进化
128、生存斗争:生物个体(同种或异种的)之间的相互斗争,以及生物与无机自然条件(如干旱,寒冷)之间的斗争,赖以维持个体生存并繁衍种族的自然现象。
129、自然选择:在生存斗争中,适者生存,不适者淘汰的过程叫自然选择。
130、适应:生物与环境表现相适合的现象。
生物与环境
131、生态学:研究生物与环境之间相互关系的科学,叫做生态学。
132、生态因素:环境中影响生物的形态、生理和分布的因素,叫做生态因素。
133、阳生植物:在比较强的光照下才生长得好的植物。
134、阴生植物:在比较弱的光照下才生长得好的植物。
135、长日照植物:需要较长的日照才能开花结果的植物。
136、短日照植物:需要较长的日照才能开花结果的植物。:
137、种内关系:同种生物的不同个体或群体之间的关系。
138、种内互助:同种生物之间发生的一些有利于捕食或者防御敌害的行为。
139、种内斗争:同种生物的不同个体之间由于争夺食物、资源、配偶等发生矛盾的现象。
140、种间关系:是指不同生物之间的关系,包括共生、寄生、竞争、捕食等。
141、种间互助:不同种的生物之间发生的对双方或者一方有利的行为。
142、种间斗争:不同种的生物之间由于争夺资源、空间等所发生矛盾的现象。
143、共生:两种生物共同生活在一起,相互依赖,彼此有利;如果彼此分开,则双方或者一方不能独立生存(----互惠互利,不能分开)。
144、共栖:两种都能独立生活的动物生活在一起,对双方都有利或对一方有利对另一方也无害(----互惠互利,或一方有利,可以分开)。
145、寄生:一种生物寄居在另一种生物体的体内或体表,从那里吸取营养物质来维持生活,这种现象叫做寄生。
146、竞争:两种生物生活在一起,由于争夺资源、空间等而发生斗争的现象,叫做竞争。
147、捕食:指的是一种生物以另一种生物为食的现象。
148、物种:指分布在一定的自然区域内,具有一定的形态结构和生理功能,而且在自然状态下能够相互交配繁殖,并且产生出可育后代的一群生物个体。
149、种群:在一定时间和自然区域内同种生物个体的总和(----同种生物的所有个体)。
150、生物群落:在一定时间和自然区域内相互之间有直接或间接关系的各种生物个体的总和(----所有种群的总和)。
151、生态系统:在一定的时间和自然区域内,各种生物之间以及生物与无机环境之间通过物质循环和能量流动相互作用所形成的有机统一体(自然系统)叫做生态系统(----生物群落和无机环境作用构成)。
152、种群密度:是指单位空间内某种群的个体数量。
153、年龄组成:是指一个种群中各年龄期个体数目的比例(----形成增长型,稳定型、衰退型)。
154、性别比例:是指种群中有繁殖能力的雌雄个体数目在种群中所占的比例(----雌多于雄,雄多于雌、雌雄相当三中类型)。
155、出生率:是指种群中单位数量的个体在单位时间内新产生的个体数目。
156、死亡率:是指种群中单位数量的个体在单位时间内死亡的个体数目。
157、生物群落的结构:是指群落中各种生物在空间上的配置情况,包括垂直结构和水平结构等方面。
158、生产者:指生态系统中的自养型生物(----包括绿色植物、非绿色植物和自养型微生物)。
159、消费者:指只能利用现存的有机物的动物。
160、分解者:主要是指细菌、真菌等营腐生生活的微生物,它们能把动植物的尸体、排泄物和残落物等所含有的有机物,分解成简单的无机物,归还到无机环境中,在重新被绿色植物利用来制造有机物。
161、食物链:在生态系统中,各种生物之间由于事物关系而形成的一种联系,叫做食物链。
162、食物网:在一个生态系统中,许多食物链彼此相互交错连接的复杂营养关系,叫做食物网。
163、能量流动:指生态系统中能量的输入、传递和散失的过程(----能量流动的起点、总能量和流动渠道)。
164、物质循环:指组成生物体的基本元素,不断的进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程。
这里的生态系统指的是生物圈,其物质循环带有全球性,又叫生物地球化学循环。
165、碳的循环:碳以二氧化碳形式从无机环境进入生物群落,以有机物形式在生物群落的各成分之间传递,最终又以二氧化碳的形式回到无机环境的过程。
碳循环始终与能量流动结合在一起。
166、生态平衡:生态系统发展到一定阶段,它的生产者、消费者和分解者之间能够较长时间地保持着一种动态的平衡(它的能量流动和物质循环能够较长时间的保持动态平衡),这种平衡状态叫做生态平衡。
167、自然因素:主要是指自然界发生的异常变化,或者自然界本来就存在的对人类和生物有害的因素。
168、人为因素:主要是指人类对自然的不合理利用、工农业发展带来的环境污染等。
人与生物圈
169、就地保护:指为了保护生物多样性,把包含保护对象在内的一定面积的陆地或水体划分出来,进行保护和管理。
就地保护的对象:主要包括有代表性的自然生态系统和珍稀濒危动植物的天然集中分布区等。就地保护主要是指建立自然保护区。
170、自然保护区:为了保护自然和自然资源,特别是保护珍贵稀有的动植物资源,保护代表不同自然地带的自然环境和生态系统,国家划出一定的区域加以保护,这些区域叫做自然保护区。
171、迁地保护:指为了保护生物多样性,把因为生存条件不复存在,物种数量极少或难以找到配偶等原因,而生存和繁衍受到严重威胁的物种迁出原地,移入动物园、植物园、水族馆和濒危动物繁育中心,进行特殊的保护和管理。
迁地保护是就地保护的补充,为行将灭绝的生物提供了最后的生存机会。
172、生物富集作用:指环境中的一些污染物(如重金属、化学农药),通过食物链在生物体内大量积聚的过程。
生物富集作用随着食物链的延长而不断加强。
173、水体富营养化:指由于水体中氮、磷等植物必需的矿质元素含量过多,导致藻类植物等大量繁殖,并引起水质恶化和水生动物死亡的现象。
174、水华:富营养化的池塘和湖泊,由于某些藻类植物的过度生长,使水面形成绿色藻层;蓝藻释放的毒素杀死鱼虾和贝类等,并使水体产生恶臭,这种现象叫做水华。
175、赤潮:富营养化的海水,由于某些微小生物的急剧繁殖,导致海水变色,水质恶化,并使鱼虾和贝类大量死亡的现象叫做赤潮。
17、6生物净化:指生物体通过吸收、分解和转化作用,使生态环境中的污染物的浓度和毒性降低或消失的过程。
生物净化过程中,绿色植物和微生物起重要作用。
177、绿色食品:指按照特定的生产方式生产,经过专门机构认定和许可后,使用绿色食品标志的无污染、安全、优质的营养食品。

生物学释义:研究生物(包括动物、植物和微生物)的结构、功能、发生和发展规律的科学。
生物学(Biology),简称生物,是自然科学六大基础学科之一。研究生物的结构、功能、发生和发展的规律。以及生物与周围环境的关系等的科学。生物学源自博物学,经历实验生物学、分子生物学而进入了系统生物学时期。
一、学科分类
生物分类学是研究生物分类的方法和原理的生物学分支。分类就是遵循分类学原理和方法,对生物的各种类群进行命名和等级划分。瑞典生物学家林奈将生物命名后,而后的生物学家才用域(Domain)、界(Kingdom)、门( Phylum)、纲(Class)、目(Order)、科(Family)、属(Genus)、种(Species)加以分类。最上层的界,由怀塔克所提出的五界,比较多人接受;分别为原核生物界、原生生物界、菌物界、植物界以及动物界。 从最上层的“界”开始到“种”,愈往下层则被归属的生物之间特征愈相近。共有七大类,分别是:界门纲目科属种。

二、研究意义
生物与人类生活的许多方面都有着非常密切的关系。生物学作为一门基础科学,传统上一直是农学和医学的基础,涉及种植业、畜牧业、渔业、医疗、制药、卫生等等方面。随着生物学理论与方法的不断发展,它的应用领域不断扩大。生物学的影响已突破上述传统的领域,而扩展到食品、化工、环境保护、能源和冶金工业等等方面。如果考虑到仿生学,它还影响到电子技术和信息技术。
人口、食物、环境、能源问题是当前举世瞩目的全球性问题。世界人口每年的增长率约20%,大约每过35年,人口就会增加一倍。地球上的人口正以前所未有的速度激增着。人口问题是一个社会问题,也是一个生态学问题。人们必须对人类及环境的错综复杂的关系进行周密的定量的研究,才能对地球、对人类的命运有一个清醒的认识,从而学会自己控制自己,使人口数量维持在一个合理的数字上。在这方面生物学应该而且可能做出自己的贡献。内分泌学和生殖生物学的成就导致口服避孕药的发明,已促进了计划生育在世界范围内的推广。在人口问题中,除了数量激增以外,遗传病也严重威胁人口质量。一些资料表明,新生儿中各种遗传病患者所占的比例在 3%~10.5%之间。在中国的部分山区,智力不全者占2%~3%,个别地区达10%以上。揭示产生遗传病的原因,找到控制和征服遗传病的途径无疑是生物学又一重要任务。进行家系分析以确定患者是否患有遗传病,对患者提出有益的遗传指导和劝告;通过对胎儿的脱屑细胞进行染色体分析和各种酶的生化分析,以诊断未来的婴儿是否有先天性遗传性疾病。这些方法都能避免或减少患有遗传病婴儿的出生,以减轻家庭和社会的沉重负担。将基因工程应用于遗传病的治疗称为基因治疗,在实验动物上对几种遗传病的基因治疗已取得一些进展。随着基因工程技术的发展,基因治疗将为控制和治疗人类遗传病开辟广阔的前景。
和人口问题密切相关的是食物问题。食物匮乏是发展中国家长期以来未能解决的严重问题,当前世界上有几亿人口处于营养不良状态。到21世纪初,粮食生产至少每年要增长3%~8%才能使食物短缺状况有所改善。人类食物的最终来源是植物的光合作用,但在陆地上扩大农业生产的土地面积是有限的,增加食物产量的主要道路是改进植物本身。过去,在发展科学的农业和“绿色革命”方面,生物学已做出巨大的贡献。今天,人类在一定限度内定向改造植物,用基因工程、细胞工程培育优质、高产、抗旱、抗寒、抗涝、抗盐碱、抗病虫害的优良品种已经不是不切实际的遐想。植物基因工程一些关键技术已经有所突破,得到了一些转基因植物。此外,利用富含蛋白质的藻类、细菌或真菌,进行大规模培养,并从中获得单细胞蛋白质。由于成功地利用了基因工程并取得了大规模连续发酵工程的技术经验,单细胞蛋白技术已经取得了重大突破。氨基酸是蛋白质的单体,植物蛋白往往缺少某几种人体必需的氨基酸,如果在食品中添加某种氨基酸,将会大大提高植物蛋白的生物学价值。用微生物发酵、固定化细胞或固定化酶技产氨基酸,已经逐步形成比较完整的体系,可以预料,氨基酸生产将在营养不良问题上发挥日益重要的作用。现代生物学成就和食品工业相结合,已使食品工业成为新兴的产业而蓬勃地发展起来。
20世纪生态学关于人与自然关系的研究,唤醒人类重视赖以生存的生态环境。工业废水、废气和固体废物的大量排放,农用杀虫剂、除莠剂的广泛使用,使大面积的土地和水域受到污染,威胁着人类生产和生活。这就要求人们更深入地研究生物圈中物质和能的循环的生态学规律,并在人类的经济生活以及其他社会生活中,正确的运用这些规律,使生物能够更好地为人类服务。现代生物学证明,微生物所具有的生物催化活性是极为广泛的,利用富集培养法几乎可以找到降解任何一种含毒有机化合物的微生物,利用基因工程等技术还可以不断提高它们的降解作用。因此,有降解作用的微生物及其酶制剂就成为消除污染的有力手段。利用微生物防治害虫,以部分代替严重污染的有机杀虫剂也是大有前途的。在农业中尽快使用生物防治、生物固氮等新技术,改变农业过分依赖石油化工的局面,这是关系到恢复自然生态平衡的大事,也是农业发展的大势所趋。大量消耗资源的传统农业必将向以生物科学和技术为基础的生态农业转变
全世界的化工能源(石油、煤等)贮备总是有限的,总有一天会枯竭。因此,自然界中可再生的生物资源(生物量) 又重新被人所重视。自然界中的生物量大多是纤维素、半纤维素、木质素。将化学的、物理的和生物学的方法结合起来加工,就可以把纤维素转化为酒精,用作能源。有人估计,到20世纪末全世界的汽车约有35%将使用生物量(酒精)。沼气是利用生物量开发能源的另一产品。中国和印度利用农村废料进行厌氧发酵产生沼气已作出显著成绩。世界上已经出现了利用固相化细胞技术的工业化沼气厌氧反应器。一些单细胞藻类中含有与原油结构类似的油类,而且可高达总重的70%,这是另一个引人注目的可再生的生物能源。太阳能是人类可以利用的最强大的能源,而生物的光合作用则是将太阳能固定下来的最主要的途径,可以预测,利用生物学的理论和方法解决能源问题是大有希望的。
此外,对人口、食物、环境、能源等问题进行综合研究,开创各种综合解决这些问题的方法的农业生态工程的兴起,最终将发展新的、大规模的近代化农业。
上面的叙述,仅就人口、食物、环境、能源问题和生物学的关系而言,也还是很不充分的。但由此可以看到,生物学的发展和人类的未来息息相关。

1、 分子生物学:是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。
2、 医学分子生物学:是分子生物学的一个重要分支,又是一门新兴交叉学科。它是从分子水平上研究人体在正常和疾病状态下的生命活动及其规律,从分子水平开展人类疾病的预防、诊断和治疗研究的一门科学。
3、酶工程:过去主要是通过生物化学方法从各种材料中提取、制备酶制剂。现在主要应用基因工程技术制取酶制剂。
4、蛋白质工程:过去主要是采用化学方法对纯化的蛋白质进行结构改造,制备出有特定功能的蛋白质。现在主要应用基因工程技术,从改造目的基因的结构入手,在受体细胞中表达不同结构的蛋白质。
5、微生物工程:又称发酵工程是利用微生物特定性状,使微生物产生有用物质或直接用于工业化生产的技术。
6、DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。
7、 CG岛:在整个基因组中存在一些成簇、稳定的非甲基化CG,这类CG称为CG岛。
8 、信使RNA:从DNA分子转录的RNA分子中,有一类可作为蛋白质生物合成的模板,称为信使RNA。
9、顺反子:由结构基因转录生成的RNA序列亦称为顺反子。
10、 帽子结构:5端第1个核苷酸是甲基化鸟嘌呤核苷酸,它以5端三磷酸酯键与第2个核苷酸的5端相连,而不是通常的3、5磷酸二酯键。
11 、核酶:在没有任何蛋白质(酶)存在的条件下,某些RNA分子也能催化其自身或其它RNA分子进行化学反应,即某些RNA具有酶样的催化活性,这类具有催化活力的RNA被命名为核酶。
12、 蛋白质的变性:蛋白质分子爱到物理化学因素(如加热、紫外线、高压、有机溶剂、酸、碱等)的影响时,可使维持空间结构的次级键断裂,性质改变,生物活性丧失,称为蛋白质的变性。
13、蛋白质的复性:导致蛋白质变性的因素除去后,某些蛋白质又可重新回复天然构象,表现出天然蛋白质的生物活性,称为蛋白质的复性。
14、 基因:是核酸分子中贮存遗传信息的遗传单位,是指贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。
15、 基因组:细胞或生物体中,一套完整单倍体的遗传物质的总和称为基因组。
16、 操纵子:是指数个功能上相关联的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。
转录单位:储存RNA和蛋白质肽链序列信息的结构基因与指导转录起始部位的序列(启动子)和转录终止的序列(终止子)共同组成转录单位。
17、 启动子:是RNA聚合酶结合的区域,操纵基因实际上不是一个基因,而是一段能被特异阻遏蛋白识别和结合的DNA序列。
18、 质粒:是细菌细胞内携带的染色体外的DNA分子,是共价闭合的环状DNA分子,能独立进行复制。
19 、质粒的不相容性:具有相同复制起始位点和分配区的两种质粒不能共存于一个宿主菌,这种现象称为质粒的不相容性。
20、 转位因子:即可移动的基因成分,是指能够在一个DNA分子内部或两个DNA分子之间移动的DNA片段。
20、自私DNA:核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似乎为自己的目的而组织,故有自私DNA之称。
21、 自杀基因:将某些细菌、病毒和真菌中特异性的基因转导入肿瘤细胞,此基因编码的特异性酶类能将原先对细胞无毒或毒性极低的前体物质在肿瘤细胞内代谢成毒性物质,达到杀死肿瘤的目的,这类前体转移酶基因称为自杀基因。
22 、断裂基因:真核生物的结构基因是不连续的,编码氨基酸的序列被非编码序列所打断,因而被称为--在编码序列之间的序列称为内含子,被分隔开的编码序列称为外显子。
23、 顺式调控元件(顺式作用元件):是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的DNA序列。
24 、反式作用因子:一些蛋白质因子可通过结合顺式作用元件而调节基因转录活性,这些蛋白质因子称为反式作用因子。
真核细胞内含有大量的序列特异性的DNA结合蛋白,其中一些蛋白的主要功能是使基因开放或关闭,称为反式作用因子,简称反式因子。
25、 启动子:是RNA聚合酶特异性识别和结合的DNA序列。
26 、上游启动子元件:是TATA盒上游的一些特定的DNA序列,反式作用因子可与这些元件结合,通过调节TATA因子与TATA盒的结合、RNA聚合酶与启动子的结合及转录起始复合物的形成(转达录起始因子与RNA聚合酶结合)来调控基因的转录效率。
27 、反应元件:一些信息分子的受体被细胞外信息分子激活后,能与特异的DNA序列结合,调控基因的表达。这种特异的DNA序列实际上也是顺式元件,由于能介导基因对细胞外的某种信号产生反应,被称为反应元件。
28 、增强子:是一段DNA序列,其中含有多个能被反式作用因子识别与结合的顺式作用元件。
29、负增强子(沉默子);增强子内含负调控序列。
30 、基因家族:指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。
31、 基因超家族:是指一组由多基因家族及单基因组成的更大的基因家族。
32、 逆转录转座子:真核生物中一些中度重复序列的转移成分则与一般细菌中的转移成分不同,要先转录成RNA,再逆转录生成cDNA,然后重新整合到基因组中,这种逆转录旁路的转移成分称为逆转录转座子。
34 、反向重复顺序:是指两个顺序相同的拷贝在DNA链上呈反向排列。其中一种形式是两个拷贝反向串联在一起,中间没有间隔顺序,这种结构亦称回文结构。
35、 RFLP技术:通过限制酶酶切片段的长度多态性来揭示DNA碱基组成不同的技术称为限制性片段长度多态性技术,简称RFLP技术。
36、 遗传图:又称连锁图,是以具有遗传多态性的遗传标记作为“位标”遗传学距离为“图标”的基因组图。
37、 物理图:是以一段已知核苷酸序列的DNA片段为“位标”,以DNA实际长度(Mb或kb)作为图距的基因组图。
38、光修复:生物体内有一种光复活酶,被光激活后能利用光反提供的能量使紫外线照射引起的嘧淀二聚体分开,恢复原来的两个核苷酸,称为光修复。
39、逆转录:是指以RNA为模板,利用宿主细胞中4种dNTP为原料,在引物的3端以5-3方向合成与RNA互补的DNA链的过程,此过程与中心法则方向相反,故称为逆转录。
40、SD序列:AUG密码子上游8~13个碱基处存在一个称为SD序列的结构,该序列与小亚基中16SrRNA3端的序列互补,当mRNA与小亚基结合时,SD序列与16SrRNA3端互补序列配对结合,起始密码准确的定位于翻译起始部位。
41 、基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。
42、基因工程:将基因进行克隆,并利用克隆的基因表达、制备特定的蛋白或多肽产物,或定向改造细胞乃至生物个体的特性所用的方法及相关的工作统称为基因工程
43、分子克隆:制备DNA片段,并通过载体将其导入受体细胞,在受体细胞中复制、扩增,以获得单一DNA分子的大量拷贝。
44、 DNA重组:不同来源的DNA分子可以通过末端共价连接(磷酸二酯键)而形成重新组合的DNA分子。
45、管家基因:有些在生命全过程都是必需的,且在一个生物个体的几乎所有细胞中持续表达的基因,通常被称为管家基因。
46、诱导表达:有些基因表达极易爱环境变化影响,在特定环境信号刺激下,有些基因的表达表面为开放或增强,则这种表达方式称为诱导表达。
47、 严谨反应:细菌在缺乏氨基酸的环境中,RNA聚合酶活性降低,RNA(rRNA,tRNA)合成减少或停止,这种现象称为严谨反应。
48、 衰减子:细菌中的mRNA转录和蛋白质翻译合成是偶联在一起的。这一特点使细菌的一些操纵子的特殊序列可以在转录过程中控制转录水平。这些特殊序列称为--又称弱化子,位于一些操纵子中第一个结构基因之前,是一段能减弱转录作用于的顺序。
49、组合式基因调控:每一种反式作用因子结合顺式作用元件后虽然可发挥促进或抑制作用,但反式作用因子对基因表达的调控不是由单一因子完成的,而是几种因子组合,发挥特定的作用,称为组合式基因调控。
50、 细胞通讯:细胞间识别、联络和相互作用的过程称为细胞通讯。
51、信号转导:针对外源信号所发生的细胞应答反应全过程称为信号转导。
52、 调控结合元件:细胞内的信号转导分子有许多都是蛋白质,其分子中存在着一些特殊的结构域,它们是信号分子相互识别的部位,信号分子通过这些特殊结构域的识别和相互作用而有序衔接,形成不同的信号传递链或称为信号转导途径,这些结构域称为调控结合元件。
53、 第二信使:G蛋白活化之后唧 可激活其下游的效应分子,如腺苷酸环化酶和磷脂酶C等。这些效应分子随后可催化一些分子的产生或浓度和分布的变化。这些小分子能够继续向下游传递信息,因而被称为细胞内小分子信使,亦称为第二信使。已知的细胞内小分子信使包括cAMP、cGMP、甘油二酯(DAG)、IP3和Ca2+等等。
54、 DNA重组:不同来源的DNA分子可以通过末端共价连接(磷酸二酯键)而形成重新组合的DNA分子,这一过程称为DNA重组。
55、 限制酶:是一类内切核酸酶,因而又称为限制性内切核酸酶。这类酶能识别双链DNA内部特异位点并且裂解磷酸二酯键。
56、 同功异源酶:来源不同的酶,但能识别和切割同一位点,这些酶称为同功异源酶。
57、 同尾酶:有些限制酶识别序列不同,但是产生相同的粘性末端,这些酶为同尾酶。
58、 Klenow片段:用枯草杆菌蛋白酶可将DNA聚合酶I裂解为大小两个片段,大片段的分子量为76kD,这个片段也称为 Klenow片段。
59、 入 噬菌体:是感染细菌的病毒,其基因组是线性双链DNA分子,当其感染宿主细胞并将基因整合到细胞后,基因组DNA变成环状,用于分子克隆中的载体。
60、 基因文库:采用限制酶将基因组DNA切成片段,每一DNA片段都与一个载体分子拼接成重组DNA,将所有的重组DNA分子都引入宿主细胞并进行扩增,得到分子克隆的混合体,这样一个混合体称为--
61、 cDNA文库:将cDNA的混合体与载体进行连接,使每一个cDNA分子都与一个载体分子拼接成重组DNA。将所有的重组DNA分子都导入宿主细胞并进行扩增,得到分子克隆的混合体,这样一个混合体称为-
62、cDNA:是指体外用逆转录酶催化,以mRNA为模板合成的互补DNA。
63、转化:是指将质粒或其它外源DNA导入处于感受态的宿主细胞。并使其获得新的表型 的过程。
64、 转导:由噬菌体和细胞病毒介导的遗传信息转移过程也称为转导。
65、转染:真核细胞主动摄取或被导入外源DNA片段而获得新的表型的过程。
66、显微注射法:在制备转基因动物时,将外源基因通过毛细玻璃管,在显微镜下直接注射到受精卵的细胞核内,称为显微注射法。
67、 基因定点诱变:是指将基因的某一个或某些位点进行人工替换或删除的过程。
68、 双脱氧链终止法;是以单链或双链DNA为模板,采用DNA引物引导新生DNA的合成,因此又称为引物合成法,或酶促引物合成法。
69、核酸分子杂交:是指具有互补序列的两条核酸单链在一定条件下按碱基配对原则形成双链的过程。
70、探针:杂交体系中已知的核酸序列称作探针。
71、DNA变性:在物理或化学因素作用下,例如加热、酸碱或紫外线照射,可以导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键(如磷酸二酯键、糖苷键等)则不受影响,称为DNA变性。常见方法:热变性、碱变性、化学试剂变性。
72、DNA复性:当促使变性的因素解除后,两条DNA链又可通过碱基互补配对结合形成DNA双螺旋结构,称DNA复性。
73、印迹:凝胶中的DNA片段虽然在碱变性过程中已经变性成单链并已断裂,转移后,各个DNA片段在膜上的相对位置与在凝胶中的相对位置仍然一样,因而称为印迹。
74、Northern印迹杂交:将待测RNA样品经电泳分离后转移到固相支持物上,然后与标记的核酸探针进行固-液相杂交,检测RNA(主要是mRNA)的方法。
75、斑点印迹:将RNA或DNA变性后直接点样于硝酸纤维素膜或尼龙膜上,用于基因组中特定基因及其表达的定性及定量研究,称斑点印迹。
76、原位杂交:核酸保持在细胞或组织切片中,经适当方法处理细胞或组织后,将标记的核酸探针与细胞或组织中的核酸进行杂交,称原位杂交。
77、液相杂交:待测核酸分子与核酸探针都存在于杂交液中,碱基互补的单链核酸分子在液体中配对形成杂交分子。目前常用的液相杂交的RNA酶保护分析法(RPA)、核酸酶S1保护分析法。
78、停滞效应:(平台期):随着目的DNA扩增产物的逐渐积累,酶的催化反应趋于饱和,此时DNA扩增产物的增加减慢,进入相对稳定状态,即出现停滞效应。
79、筑巢PCR:先用一对外侧引物扩增含目的基因的大片段,再用内侧引物以大片段为模板扩增获取目的基因。
80、多重PCR:是在一次反应中加入多对引物,同时扩增一份DNA样品中不同序列的PCR过程。
81、连接酶链反应(LCR连接酶扩增反应LAR):是以DNA连接酶将某一DNA链的5磷酸与另一相邻链的3羟基连接为基础的循环反应。
82、基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。若定向敲除某个基因,称为基因敲除,若定向将一段基因序列替代另一段基因序列,称为基因敲入。
83、基因敲除:通过DNA同源重组,使得ES细胞特定的内源基因被破坏而造成其功能丧失,然后通过ES细胞介导得到该基因丧失的小鼠模型的过程称为--;其基本程序:(1)构建打靶载体;(2)ES细胞的体外培养;(3)重组载体转染ES细胞;(4)重组体转染的ES细胞的鉴定;(5)ES细胞胚胎移植和嵌合体杂交育种。
84、打靶载体:由部分残留的待敲除基因的同源片段、位于其内部的neo基因和位于其外侧的HSU-tk基因共同构成的载体即为打靶载体。
85、DNA芯片技术:指在固相支持物上原位合成寡核苷酸或者直接将大量DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可得出样品的遗传信息。DNA芯片的类型:原位合成芯片和DNA微集阵列。
86、自发突变:引起DNA一级结构改变的原因主要有两类:一类是复制时碱基的偶然性错配,由此引起的突变称为自发突变;另一类是体内代谢过程中产生的自由基由某些环境因素引起的DNA一级结构改变,由此引起的突变称为诱发突变。
87、 错义突变:DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由它所编码的氨基酸就变成另一种不同的氨基酸,使得多肽链中氨基酸的顺序也相应地发生改变,这种突变称--
88、同义突变:碱基取代,在蛋白质水平上没有引起变化,氨基酸没有被取代,这是因为突变后的密码子与原来的密码子代表同一个氨基酸,这种突变称为同义突变。
89、移码突变:在编码序列中,单个碱基数个碱基的缺失或插入以及片段的缺失或插入等均可使突变位点之后的三联体密码阅读框发生改变,不能编码原来的正常蛋白质,即所谓--
90、原癌基因:是一种正常细胞的正常基因,在正常细胞中编码关键性调控蛋白,在细胞增殖和分化中起重要调控作用,它不具有致癌性,但当其受到物理、化学或病毒等致癌因素的作用而失控或发生突变时,可过度表达或持续表达其产物,就变成了癌基因,可以使细胞恶性转化。
91、病毒癌基因:病毒所携带着的致转化基因。
92、抑癌基因(抗癌基因):存在于正常细胞内的一大类可抑制细胞生长并具有潜在抑癌作用的基因。其表达产物主要包括跨膜受体、胞质调节因子或结构蛋白、转录因子和转录调节因子、细胞周期因子、DNA损伤修复因子以及其它一些功能蛋白。
93、细胞周期素/周期依赖性激酶:有些蛋白激酶的细胞周期特异性或时相性激活依赖于一类呈细胞周期特异性或时相性表达、累积与分解的蛋白质,后者被称为细胞周期素激酶,前者周期依赖性激酶。
94、启动因子:在癌变的启动阶段使细胞发生癌前期改变的因素。
95、基因诊断:是以DNA和RNA为诊断材料,通过检查基因的存在、缺陷或表达异常,对人体状态和疾病作出诊断的方法和过程。
96、 基因治疗:通过在特定靶细胞中表达该细胞本来不表达的基因,或采用特定方式关闭、抑制异常表达基因,达到治疗疾病目的的治疗方法。
97、 基因置换:(基因矫正):将特定的目的基因导入特定的细胞,通过定位重组,以导入的正常基因置换基因组内原有的缺陷基因。
98、基因添加(基因增补)通过导入外源基因使靶细胞表达其本身不表达的基因。
99、基因干预:采用特定的方式抑制某个基因的表达,或者通过破坏某个基因而使之不能表达,以达到治疗疾病的目的。

基因表达(gene expression):原核生物和真核生物基因组中特定的结构基因所携带的遗传信息,经过转录、翻译等一系列过程,合成具有特定生物学功能的各种蛋白质,表现出特定的生物学效应的全过程。

操纵子(operon):原核生物基因表达的基本单位,由结构基因、调控元件和操纵基因构成。

启动子(promoter):RNA聚合酶最初与DNA结合的DNA序列,决定基因表达效率的关键元件。

增强子(enhancer):位于启动子上游或下游并通过启动子增强临近基因转录效率的DNA序列。

顺式作用元件(cis-acting element):某些能影响基因表达但不编码蛋白质和RNA的DNA序列,包括启动子、增强子、负调控元件(沉默子)。

反式作用因子(trans-acting factor):能直接或间接地识别或结合在顺式作用元件8~12bp核心序列上,参与调控靶基因转录效率的一组蛋白质,也称序列特异性DNA结合蛋白(SDBP),或转录因子。

管家基因:(house-keeping gene):有些基因几乎在所有细胞中持续表达,不易受环境条件影响。管家基因的表达称为组成性基因表达。

癌基因(oncogene):存在于病毒或细胞基因组中的一类在一定条件下能使正常细胞发生恶化转化的核苷酸序列。

抑癌基因(antioncogene):存在于细胞基因组内的一类能抑制细胞恶性转化的核苷酸序列。

转化(transformation):受体菌直接摄取供体菌游离的DNA片段,获得新的遗传性状。

PCR(polymerasechain reaction):聚合酶链式反应,利用DNA聚合酶在体外条件下,催化一对引物间的特异性DNA片段合成的基因体外扩增技术。

基因克隆(gene cloning):在体外对DNA分子进行剪切和重新连接,导入宿主细胞,扩增有关DNA片段,表达有关基因产物等,又称DNA重组技术、基因工程。

基因工程(gene engineering):见基因克隆。

限制性核酸内切酶(restriction enzyme):能识别双链DNA分子内部的特异位点并且裂解磷酸二酯键。

cDNA文库(cDNA library):指某生物某一发育时期所转录的mRNA 全部经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合。

探针(probe):一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)

医学细胞生物学名词解释
答:1、膜相结构:指真核细胞中以生物膜为基础形成所有结构,包括细胞膜(质膜)与细胞内所有膜性细胞器。如细胞膜、线粒体、高尔基复合体、内质网、溶酶体、核被膜、过氧化酶体等。2、非膜相结构:指纤维状、颗粒状或管状细胞器,如染色质(染色体)、核仁、核糖体、核骨架、核基质、细胞基质、微管、微丝...

细胞生物学名词解释
答:细胞生物学名词解释如下:1. 细胞膜(Cell Membrane)/质膜(Plasma Membrane):细胞膜是指围在细胞质外表面的一层薄膜,因而也称为质膜。其基本作用是保持细胞有相对独立和稳定的内环境,控制细胞内外物质、信息、能量的出入,同时还参与细胞的运动。2. 细胞核(nucleus):细胞核是真核生物中由双层...

细胞生物学重点名词解释
答:细胞生物学重点名词解释如下:结构域:是在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,形成两个或多个在空间上可以明显区别的局部区域。蛋白质的三级结构:具有二级结构、超二级结构或结构域的一条多肽链,由于其序列上相隔较远的氨基酸残基侧链的相互作用,而进行范围广泛的盘曲和折叠,...

医学细胞生物学名词解释
答:细胞的解释(1) [cell] (2) 微小的通常是用显微镜才能 看到 的由半透膜与外界分开的原生质团 (3) 现又可 比喻 事物的基本构成部分 详细解释 生物学 名词 。构成生物体的基本单位。体形极微,在显微镜下始能窥见。形状多种多样。主要由细胞核与细胞质构成,表面有薄膜。动植物细胞结构大致相同。植物...

细胞生物学名词解释,求达人相助! 最好权威一点的,可以用来做考试答案...
答:1.nuclear lamina 核纤层 定义:位于细胞核内核膜下与染色质之间的、由中间纤维相互交织而形成的一层高电子密度的蛋白质网络片层结构。在细胞分裂过程中对核被膜的破裂和重建起调节作用。2.contact inhibition 接触抑制 定义:将多细胞生物的细胞进行体外培养时,分散贴壁生长的细胞一旦相互汇合接触,即停止...

分子生物学名词解释
答:分子生物学名词解释如下:1、基因(gene)是贮存遗传信息的核酸(DNA或RNA)片段,包括编码RNA和蛋白质的结构基因以及转录调控序列两部分。2、结构基因(structural gene)指基因中编码RNA和蛋白质的核苷酸序列。它们在原核生物中连续排列,在真核生物中则间断排列。3、断裂基因(split gene)真核生物的结构...

微生物学名词解释
答:微生物学名词解释如下:1、微生物:存在于自然界的一群体积微小、结构简单、肉眼看不见,必须借助光学显微镜或电子显微镜放大数百倍、数千倍,甚至数万倍才能观察到的微小生物。2、病原微生物:具有治病作用的微生物。3、脂多糖:革兰阴性菌的内毒素,结合在脂质双层上,菌体溶解时才释放,由脂质A、核心...

求下列生物名词解释!!!
答:转化(英文transformation)即细胞通过摄取外源遗传物质(DNA或RNA)而发生遗传学改变的过程。在转化过程中,转化的DNA片段称为转化因子。受体菌只有处在感受态时才能够摄取转化因子。转化因子通常是质粒DNA。而质粒融合或病毒感染是导致引入外源DNA的原因。动物细胞的转化又被称为转染(transfection)。转基因植物的...

微生物与免疫学的名词解释都有哪些?
答:11. 细胞因子:是指由活化的免疫细胞或非免疫细胞合成与分泌的,具有多种生物学效应的 小分子多肽。12. APC:即抗原提呈细胞,能表达被特异性T细胞识别的抗原肽:MHC复合物的所有细 胞,主要包括单核吞噬细胞,树突状细胞,B细胞。13. 免疫应答:是指免疫细胞识别抗原,自身的活化,增殖分化,产生效应...

病原生物学名词解释
答:1.保虫宿主 有些寄生虫既可寄生于人,也可寄生于脊椎动物,在一定条件下可传给人,在流行病学上,称这些脊椎动物为保虫宿主。或:可以作为人体寄生虫病传染来源的受染脊椎动物。2.夜现周期性 丝虫成虫寄生于淋巴系统产微丝蚴,微丝蚴在人的外周血液中周期性出现,白天滞留于肺微血管内,夜晚则出现在...

IT评价网,数码产品家用电器电子设备等点评来自于网友使用感受交流,不对其内容作任何保证

联系反馈
Copyright© IT评价网