数列求和,1^2+2^2+…+n^2=?

数列Sn=1^2+2^2+3^2+4^2+....n^2求和~

利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
……
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

把这个式子n*(n+1)里的n乘进去,得到n^2+n,再利用平方和公式1^2+2^2+3^2+4^2+……+n^2=n
(n+1)(2n+1)×1/6,1+2+3+4+……+n=n(n+1)/2,最后结果是[n
(n+1)(2n+1)×1/6]+[n(n+1)/2],所得结果再除以2就行了。

an = n²

= 1² + 2² + 3² + .+ n² 

=1^2+2^2+.+n^2 (n+1)^3-n^3 

= 3n^2+3n+1 n^3-(n-1)^3 

= 3(n-1)^2+3(n-1)+1 ... .. ... 2^3-1^3 

= 3*1^2+3*1+1

=1^2+2^2+……+n^2

=(n^3+3n^2+3n)/3-n(n+1)/2-n/3

=n(n+1)(2n+1)/6

扩展资料

数列求和公式:

式一为等差数列求和公式,式二、三为等比数列求和公式。其中d为等差数列的公差,q为等比数列的公比,Sn为数列前n项和。

性质:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。



公式:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

证明:
给个算术的差量法求解:

我们知道(m+1)^3-m^3=3m^2+3m+1,可以得到下列等式:

2^3 - 1^3 = 3*1^2 + 3*1 + 1
3^3 - 2^3 = 3*2^2 + 3*2 + 1
4^3 - 3^3 = 3*3^2 + 3*3 + 1
.........
(n+1)^3 - n^3 = 3.n^2 + 3*n + 1

以上式子相加得到
(n+1)^3 - 1 = 3*Sn + 3*n(n+1)/2 + n
其中Sn = 1^2 + 2^2 + 3^2 + ...... + n^2
化简整理得到:
Sn = n*(n + 1)*(2n + 1)/6

如果不懂,请Hi我,祝学习愉快!

证明1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6

证法一
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^2
=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)

由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前后消项]
=[n(n+1)(n+2)]/3

所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6

证法二
利用立方差公式
n^3-(n-1)^3
=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全部相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)
=n^3+n^2+n(n+1)/2
=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

设S=1^2+2^2+....+n^2

(n+1)^3-n^3 = 3n^2+3n+1
n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1
...
..
...

2^3-1^3 = 3*1^2+3*1+1

把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+....+n] +n

所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)

1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
证法一
n^2=n(n+1)-n
1^2+2^2+3^2+.+n^2
=1*2-1+2*3-2+.+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+.+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前后消项]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+.+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
证法二
利用立方差公式
n^3-(n-1)^3
=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全部相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)
=n^3+n^2+n(n+1)/2
=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

数列平方和公式是什么
答:我们可以将 a_1 = 1 和 a_n = n带入公式中,得到:S_n = n/2 × (1 + n)3、进一步展开得到:S_n = 1^2 + 2^2 + 3^2 + ... + n^2 这个公式就是平方和公式。因此,我们可以通过等差数列求和...

数列求和,1^2+2^2+…+n^2=? 请写清楚步骤,不具体没关系,
答:简单分析一下,答案如图所示

请问1的平方到n的平方之和是多少?
答:n=1时,1=1*2*3/6=1成立 假设n=k时也成立,那么k(k+1)(2k+1)/6=1²+2²+...+k²那么n=k+1 1²+2²+...+k²+(k+1)²=k(k+1)(2k+1)/6+(k+1)...

求和1^2+2^2+3^2+...+n^2
答:2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+......

数列求和1^2+2^2+3^2+…+(n-1)^2
答:(n+1)^3-n^3=3n^2+3n+1 1^2=1 2^3-1^3=3*1^2+3*1+1 3^3-2^3=3*2^2+3*2+1 ...(n+1)^3-n^3=3*n^2+3n+1 累加得:(n+1)^3=2Sn+3(1+2+...+n)+n Sn=n(n+1)(2n+1)/6...

数学,一平方加二平方一直加到n平方,请问如何推出规律?
答:Sn=1²+2²+...+n², 是用立方来求和的。记Tn=1+2+...+n=n(n+1)/2 由立方差公式:(n+1)³-n³=3n²+3n+1 代入n=1, 2, ...,n得:2³-1³=3*1&...

求数列1平方,2平方,3平方……n平方的前n项和
答:解答过程如下:设S=1^2+2^2+...+n^2 (n+1)^3-n^3 = 3n^2+3n+1 n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1 ...2^3-1^3 = 3*1^2+3*1+1 把上面n个式子相加得:(n+1)^3-1 = 3* [1...

平方求和公式推导
答:根据等差数列求和公式,1+2+3+...+n= n*(n+1)/2,把这个公式平方再展开,可以得到1^2+2^2+3^2+...+n^2=(n*(n+1)/2)^2=n*(n+1)(2n+1)/4。因此,平方求和公式可以表示为n(n+1)*(...

1的平方加到n的平方和公式是什么?
答:1.平方数列求和公式推导过程是通过(n+1)³-n³=3n²+3n+1,Sn=1²+2²+...+n²,Tn=1+2+..+n=n包括n+1/2,得:∑(n+1)³-n³=3∑n²+3∑n+∑1...

求数列前n项和1^2+2^2+3^2……n^2
答:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 证法一 n^2=n(n+1)-n 1^2+2^2+3^2+...+n^2 =1*2-1+2*3-2+...+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n)由于n(n+1)=[...

IT评价网,数码产品家用电器电子设备等点评来自于网友使用感受交流,不对其内容作任何保证

联系反馈
Copyright© IT评价网